29 research outputs found

    METHODS AND COMPOSITIONS FOR OBTAINING USEFUL PLANT TRAITS

    Get PDF
    The present invention provides methods for obtaining plants that exhibit useful traits by perturbation of plastid function in plant rootstocks and grafting the rootstocks to scions. Methods for identifying genetic loci that provide for useful traits in plants and plants produced with those loci are also provided. In addition, plants that exhibit the useful traits, parts of the plants including seeds, and products of the plants are provided as well as methods of using the plants. Recombinant DNA vectors and transgenic plants comprising those vectors that provide for plastid perturbation are also provided

    Enhancing resolution of natural methylome reprogramming behavior in plants

    Get PDF
    We have developed a novel methylome analysis procedure, Methyl-IT, based on information thermodynamics and signal detection. Methylation analysis involves a signal detection problem, and the method was designed to discriminate methylation regulatory signal from background noise induced by thermal fluctuations. Comparison with three commonly used programs and various available datasets to furnish a comparative measure of resolution by each method is included. To confirm results, methylation analysis was integrated with RNAseq and network enrichment analyses. Methyl-IT enhances resolution of genome methylation behavior to reveal network-associated responses, offering resolution of gene pathway influences not attainable with previous methods

    Enhancing resolution of natural methylome reprogramming behavior in plants

    Get PDF
    We have developed a novel methylome analysis procedure, Methyl-IT, based on information thermodynamics and signal detection. Methylation analysis involves a signal detection problem, and the method was designed to discriminate methylation regulatory signal from background noise induced by thermal fluctuations. Comparison with three commonly used programs and various available datasets to furnish a comparative measure of resolution by each method is included. To confirm results, methylation analysis was integrated with RNAseq and network enrichment analyses. Methyl-IT enhances resolution of genome methylation behavior to reveal network-associated responses, offering resolution of gene pathway influences not attainable with previous methods

    Enhancing resolution of natural methylome reprogramming behavior in plants

    Get PDF
    We have developed a novel methylome analysis procedure, Methyl-IT, based on information thermodynamics and signal detection. Methylation analysis involves a signal detection problem, and the method was designed to discriminate methylation regulatory signal from background noise induced by thermal fluctuations. Comparison with three commonly used programs and various available datasets to furnish a comparative measure of resolution by each method is included. To confirm results, methylation analysis was integrated with RNAseq and network enrichment analyses. Methyl-IT enhances resolution of genome methylation behavior to reveal network-associated responses, offering resolution of gene pathway influences not attainable with previous methods

    Enhancing resolution of natural methylome reprogramming behavior in plants

    Get PDF
    We have developed a novel methylome analysis procedure, Methyl-IT, based on information thermodynamics and signal detection. Methylation analysis involves a signal detection problem, and the method was designed to discriminate methylation regulatory signal from background noise induced by thermal fluctuations. Comparison with three commonly used programs and various available datasets to furnish a comparative measure of resolution by each method is included. To confirm results, methylation analysis was integrated with RNAseq and network enrichment analyses. Methyl-IT enhances resolution of genome methylation behavior to reveal network-associated responses, offering resolution of gene pathway influences not attainable with previous methods

    Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mitochondrial genome of higher plants is unusually dynamic, with recombination and nonhomologous end-joining (NHEJ) activities producing variability in size and organization. Plant mitochondrial DNA also generally displays much lower nucleotide substitution rates than mammalian or yeast systems. Arabidopsis displays these features and expedites characterization of the mitochondrial recombination surveillance gene <it>MSH1 </it>(MutS 1 homolog), lending itself to detailed study of <it>de novo </it>mitochondrial genome activity. In the present study, we investigated the underlying basis for unusual plant features as they contribute to rapid mitochondrial genome evolution.</p> <p>Results</p> <p>We obtained evidence of double-strand break (DSB) repair, including NHEJ, sequence deletions and mitochondrial asymmetric recombination activity in Arabidopsis wild-type and <it>msh1 </it>mutants on the basis of data generated by Illumina deep sequencing and confirmed by DNA gel blot analysis. On a larger scale, with mitochondrial comparisons across 72 Arabidopsis ecotypes, similar evidence of DSB repair activity differentiated ecotypes. Forty-seven repeat pairs were active in DNA exchange in the <it>msh1 </it>mutant. Recombination sites showed asymmetrical DNA exchange within lengths of 50- to 556-bp sharing sequence identity as low as 85%. <it>De novo </it>asymmetrical recombination involved heteroduplex formation, gene conversion and mismatch repair activities. Substoichiometric shifting by asymmetrical exchange created the appearance of rapid sequence gain and loss in association with particular repeat classes.</p> <p>Conclusions</p> <p>Extensive mitochondrial genomic variation within a single plant species derives largely from DSB activity and its repair. Observed gene conversion and mismatch repair activity contribute to the low nucleotide substitution rates seen in these genomes. On a phenotypic level, these patterns of rearrangement likely contribute to the reproductive versatility of higher plants.</p

    Functional Modeling Identifies Paralogous Solanesyl-diphosphate Synthases That Assemble the Side Chain of Plastoquinone-9 in Plastids

    Get PDF
    Background: Plastid isoforms of solanesyl-diphosphate synthase catalyze the elongation of the prenyl side chain of plastoquinone-9. Results: Corresponding mutants display lower levels of plastoquinone-9 and plastochromanol-8 and display intact levels of vitamin E. Conclusion: Plastochromanol-8 originates from a subfraction of non-photoactive plastoquinol-9 and is not essential for seed longevity. Significance: Viable plastoquinone-9 mutants are invaluable tools for understanding plastid metabolism

    The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in \u3ci\u3eArabidopsis\u3c/i\u3e

    Get PDF
    It is not known how plants make the benzenoid ring of ubiquinone, a vital respiratory cofactor. Here, we demonstrate that Arabidopsis thaliana uses for that purpose two separate biosynthetic branches stemming from phenylalanine and tyrosine. Gene network modeling and characterization of T-DNA mutants indicated that acyl-activating enzyme encoded by At4g19010 contributes to the biosynthesis of ubiquinone specifically from phenylalanine. CoA ligase assays verified that At4g19010 prefers para-coumarate, ferulate, and caffeate as substrates. Feeding experiments demonstrated that the at4g19010 knockout cannot use para-coumarate for ubiquinone biosynthesis and that the supply of 4-hydroxybenzoate, the side-chain shortened version of para-coumarate, can bypass this blockage. Furthermore, a trans-cinnamate 4-hydroxylase mutant, which is impaired in the conversion of trans-cinnamate into para-coumarate, displayed similar defects in ubiquinone biosynthesis to that of the at4g19010 knockout. Green fluorescent protein fusion experiments demonstrated that At4g19010 occurs in peroxisomes, resulting in an elaborate biosynthetic architecture where phenylpropanoid intermediates have to be transported from the cytosol to peroxisomes and then to mitochondria where ubiquinone is assembled. Collectively, these results demonstrate that At4g19010 activates the propyl side chain of para-coumarate for its subsequent β-oxidative shortening. Evidence is shown that the peroxisomal ABCD transporter (PXA1) plays a critical role in this branch. Includes supplementary files

    Functional Modeling Identifies Paralogous Solanesyl-diphosphate Synthases That Assemble the Side Chain of Plastoquinone-9 in Plastids

    Get PDF
    Background: Plastid isoforms of solanesyl-diphosphate synthase catalyze the elongation of the prenyl side chain of plastoquinone-9. Results: Corresponding mutants display lower levels of plastoquinone-9 and plastochromanol-8 and display intact levels of vitamin E. Conclusion: Plastochromanol-8 originates from a subfraction of non-photoactive plastoquinol-9 and is not essential for seed longevity. Significance: Viable plastoquinone-9 mutants are invaluable tools for understanding plastid metabolism

    The Majority of the Type III Effector Inventory of \u3ci\u3ePseudomonas syringae\u3c/i\u3e pv. \u3ci\u3etomato\u3c/i\u3e DC3000 Can Suppress Plant Immunity

    Get PDF
    The Pseudomonas syringae type III protein secretion system (T3SS) and the type III effectors it injects into plant cells are required for plant pathogenicity and the ability to elicit a hypersensitive response (HR). The HR is a programmed cell death that is associated with effector-triggered immunity (ETI). A primary function of P. syringae type III effectors appears to be the suppression of ETI and pathogen-associated molecular pattern–triggered immunity (PTI), which is induced by conserved molecules on microorganisms. We reported that seven type III effectors from P. syringae pv. tomato DC3000 were capable of suppressing an HR induced by P. fluorescens (pHIR11) and have now tested 35 DC3000 type III effectors in this assay, finding that the majority of them can suppress the HR induced by HopA1. One newly identified type III effector with particularly strong HR suppression activity was HopS2. We used the pHIR11 derivative pLN1965, which lacks hopA1, in related assays and found that a subset of the type III effectors that suppressed HopA1-induced ETI also suppressed an ETI response induced by AvrRpm1 in Arabidopsis thaliana. A. thaliana plants expressing either HopAO1 or HopF2, two type III effectors that suppressed the HopA1- induced HR, were reduced in the flagellin-induced PTI response as well as PTI induced by other PAMPs and allowed enhanced in planta growth of P. syringae. Collectively, our results suggest that the majority of DC3000 type III effectors can suppress plant immunity. Additionally, the construct pLN1965 will likely be a useful tool in determining whether other type III effectors or effectors from other types of pathogens can suppress either ETI, PTI, or both
    corecore